Strain-gated piezotronic logic nanodevices.

نویسندگان

  • Wenzhuo Wu
  • Yaguang Wei
  • Zhong Lin Wang
چکیده

Fabrication of the strain-gated inverter (SGI) The SGI was fabricated by bonding two ZnO NWs laterally on a Dura-Lar film. The thickness of the Dura-Lar film is 0.5 mm. The ZnO NWs were synthesized via a physical vapor deposition method reported elsewhere [32] and typically have diameters of 300 nm and lengths of 400 μm (Fig. 1a). The films were first cleaned with acetone, isopropyl alcohol and DI water by sonication, after which, the Dura-Lar films were dried by nitrogen gas blowing. One ZnO NW was placed flat on the top surface of the Dura-Lar film first using a probe station (Cascade Microtech, Inc.) under an optical microscope (Leica Microsystems, Inc.). Silver paint (Ted Pella, Inc.) was applied at both ends of the ZnO NW for electrical contacts. The second ZnO NW was placed on the bottom surface of the Dura-Lar film in the same way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-Newton transverse force sensor using a vertical GaN nanowire based on the piezotronic effect.

Semiconductor nanowires (NWs) have been researched as the building blocks for various nanosensors and devices, such as strain sensors, [ 1,2 ] photodetectors, [ 3 ] biosensors, [ 4 ] and gas sensors. [ 5 ] In recent years, wurtzite semiconductor NWs, such as ZnO, have been extensively investigated due to their piezoelectric properties. [ 6 ] With metal-semiconductor Schottky junctions, the elec...

متن کامل

GaN nanobelt-based strain-gated piezotronic logic devices and computation.

Using the piezoelectric polarization charges created at the metal-GaN nanobelt (NB) interface under strain to modulate transport of local charge carriers across the Schottky barrier, the piezotronic effect is utilized to convert mechanical stimuli applied on the wurtzite-structured GaN NB into electronic controlling signals, based on which the GaN NB strain-gated transistors (SGTs) have been fa...

متن کامل

Strain-gated piezotronic transistors based on vertical zinc oxide nanowires.

Strain-gated piezotronic transistors have been fabricated using vertically aligned ZnO nanowires (NWs), which were grown on GaN/sapphire substrates using a vapor-liquid-solid process. The gate electrode of the transistor is replaced by the internal crystal potential generated by strain, and the control over the transported current is at the interface between the nanowire and the top or bottom e...

متن کامل

Piezotronic effect in solution-grown p-type ZnO nanowires and films.

Investigating the piezotronic effect in p-type piezoelectric semiconductor is critical for developing a complete piezotronic theory and designing/fabricating novel piezotronic applications with more complex functionality. Using a low temperature solution method, we were able to produce ultralong (up to 60 μm in length) Sb doped p-type ZnO nanowires on both rigid and flexible substrates. For the...

متن کامل

Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire.

The strain-induced band structure change in a semiconductor can change its resistivity, known as the piezoresistive effect. If the semiconductor is also a piezoelectric material, strain-induced polarization charge can control the current transport at the metal-semiconductor contact, which is called a 'piezotronic effect'. Piezotronic effect is intertwined with piezoresistive effect in the study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 22 42  شماره 

صفحات  -

تاریخ انتشار 2010